A New Constitutive Equation for Superelastic Deformation and Prediction of Martensite Volume Fraction in Titanium-Nickel-Cupper Shape Memory Alloy
نویسندگان
چکیده
منابع مشابه
Martensite Strain Memory in the Shape Memory Alloy Nickel-Titanium Under Mechanical Cycling
This paper describes an experimental study of stress-induced martensitic phase transformation in the SMA Nickel-Titanium. The rich local thermo-mechanical interactions that underlie transformation are examined using three-dimensional Digital Image Correlation (strain fields) and infrared imaging (thermal fields). We quantify the complex local interactions between released/absorbed latent heat a...
متن کاملNickel Titanium and Nickel Titanium Hafnium Shape Memory Alloy thin films
Shape Memory Alloys (SMAs) coatings of NiTi and NiTiHf have been deposited onto Si substrates using pulse DC sputtering. Coatings of NiTi with compositions containing 45 to 65 at% Ti have been fabricated by co-sputtering NiTi with Ti. NiTiHf coatings with Hf compositions ranging from 2 to 30 at% Hf have been fabricated by co-sputtering NiTi with Hf. XRD results reveal the as-deposited coatings ...
متن کاملFabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel
Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...
متن کاملEvaluation of Biocompatibility for Titanium-Nickel Shape Memory Alloy in Vivo and in Vitro Environments
This study was conducted to evaluate the biocompatibility of titanium-nickel shape memory alloy used as a medical implant material. The authors carried out the following electrochemical corrosion test and in vivo and in vitro biological tests for the alloy and some metal and alloys clinically used previously to compare the intensities concerned with the biological reactions, that is, (1) anodic...
متن کاملFinite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs
Brinson’s one-dimensional constitutive modeling for shape memory alloy (SMA) is extended to consider the asymmetric tensile and compressive behavior as well as the torsional behavior. The incremental finite element method using linear Timoshenko beam elements is formulated by the total Lagrangian approach for the superelastic, large deformation analysis of SMA helical springs. The NiTi helical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2002
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.43.822